使用说明书

Instruction Manual

6-磷酸葡萄糖酸脱氢酶(6-PGDH)活性检测试剂盒(紫外分光光度法)

6-PGDH Assay Kit (UV Spectrophotometry)

产品描述

磷酸戊糖途径中 6-磷酸葡萄糖脱氢酶 (G6PDH) 和 6PGDH 依次催化 NADPH 合成,与能量的平衡、生长速率和细胞活力等密切相关;此外,6PGDH 在逆境生理中具有重要作用。

检测原理

6PGDH 催化 6-磷酸葡萄糖酸和 NADP+生成 NADPH, NADPH 在 340 nm 有特征吸收峰,而 NADP+没有;通过测定 340nm 吸光度增加速率,计算 6PGDH 活性。

产品组成及储存条件

50T/48S 规格的产品组成如下:

	规格	储存条件
CB0004UV-A	100mL×1 瓶	4°C保存
CB0004UV-B	粉剂×1 瓶	4°C保存
CB0004UV-C	粉剂×1 瓶	4°C保存

操作说明

1. 自备用品:

紫外分光光度计、1mL 石英比色皿、低温离心机、水浴锅、可调式移液枪和蒸馏水。

2. 试剂预配制:

1) CB0004UV-B: 临用前加入 5mL CB0004UV-A 充分溶解备用。

2) CB0004UV-C: 临用前加入 5mL CB0004UV-A 充分溶解备用。

3. 粗酶液提取:

- 1) 组织:按照组织质量(g):CB0004UV-A 体积(mL)为 1:5-10 的比例(建议称取约 0.1g 组织,加入 1mL CB0004UV-A) 进行冰浴匀浆。8000g, 4° C离心 10min,取上清置冰上待测。
- 2) 细胞:按照细胞数量(10^4 个): CB0004UV-A 体积(mL)为 500-1000: 1 的比例(建议 500 万细胞加入 1mL CB0004UV-A),冰浴超声波破碎细胞(功率 300w,超声 3 秒,间隔 7 秒,总时间 3min);然后 8000g, $4^{\circ}C$,离心 10min,取上清置于冰上待测。
- 3) 血清、培养液等液体:直接测定。

4. 检测步骤:

- 1) 分光光度计预热 30min,调节波长到 340 nm,蒸馏水调零。
- 2) CB0004UV-A 置于 37°C水浴中保温 30min。
- 3) 按顺序加入下列试剂:

试剂名称		测定管 (μL)
粗酶液		100
蒸馏水	100	
CB0004UV-B	100	100
CB0004UV-A	700	700
CB0004UV-C	100	100

分别迅速混匀后于 340nm 处测定 3min 内吸光值变化,第 10s 吸光值记为 A 空 1,第 190s 吸光值记为 A 空 2, \triangle A 空白管=A 空 2-A 空 1;于 340nm 处测定 3min 内吸光值变化,第 10 s 吸光值记为 A 测 3,第 190s 吸光值记为 A 测 4, \triangle A 测定管=A 测 4-A 测 3。

注: 空白管只需要做 1-2 次。

5. 6PGDH 酶活性计算公式:

1) 按样本蛋白浓度计算

活性单位定义: 每毫克蛋白每分钟催化产生 1nmol NADPH 的酶量为 1 个酶活单位。 6PGDH (U/mg prot)= [(\triangle A 测定管- \triangle A 空白管)×V 反总÷ ϵ ÷d×10°]÷(Cpr×V 样)÷T = 535.9×(\triangle A 测定管- \triangle A 空白管)÷Cpr

2) 按样本质量计算

活性单位定义: 每克组织每分钟催化产生 1nmol NADPH 的酶量为 1 个酶活单位。 6PGDH (U/g) = [(\triangle A 测定管- \triangle A 空白管)×V 反总÷ ϵ ÷d×10°]÷(W×V 样÷V 样总)÷T = 535.9×(\triangle A 测定管- \triangle A 空白管)÷W

3) 按细胞数量计算

活性单位定义:每 10^4 个细胞每分钟催化产生 1nmol NADPH 的酶量为 1 个酶活单位。 6PGDH (U/ 10^4 cell) = [(\triangle A 测定管- \triangle A 空白管)×V 反总÷ ϵ ÷d× 10^9]÷(细胞数量×V 样÷V 样总)÷T = 535.9×(\triangle A 测定管- \triangle A 空白管)÷细胞数量

4) 按液体体积计算

活性单位定义:每毫升液体每分钟催化产生 1 nmol NADPH 的酶量为 1 个酶活单位。 6PGDH $(U/\text{mL}) = [(\triangle A 测定管-\triangle A 空白管) \times V 反总÷ε÷d×109]÷V 样÷T = 535.9×(\triangle A 测定管-\triangle A 空白管) 注: ε:NADPH 摩尔消光系数,<math>6.22 \times 10^3 \text{ L}$ / mol /cm; d:比色皿光径,1 cm; V 反总:反应体系总体积,0.001 L; Cpr:粗酶液蛋白质浓度,mg/mL,需要另外测定,建议使用 TargetMol 的蛋白质含量测定试剂盒(C0050);V 样:反应体系中加入粗酶液体积,0.1 mL; V 样总:加入提取液体积,1 mL; T:反应时间,3 min。

注意事项

- 1. 样品处理等过程均需要在冰上进行,且须在提取当日完成酶活性测定,粗酶液避免反复冻融。
- 2. CB0004UV-B 和 CB0004UV-C 须现配现用, 当天未用完试剂保存在 4°C, 可保存 2 天。
- 3. 蛋白定量测定,建议使用 TargetMol 生产的 BCA Protein Quantification Kit (C0050)。
- 4. 本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。
- 5. 为了您的安全和健康,请穿实验服并戴一次性手套操作。

